Source code for optim.ad_optim

import time
import json
import logging
log = logging.getLogger(__name__)
import torch
#from memory_profiler import profile
import config as cfg

[docs]def store_checkpoint(checkpoint_file, state, optimizer, current_epoch, current_loss,\ verbosity=0): r""" :param checkpoint_file: target file :param state: ipeps wavefunction :param optimizer: Optimizer :param current_epoch: current epoch :param current_loss: current value of a loss function :type checkpoint_file: str or Path :type state: IPEPS :type optimizer: torch.optim.Optimizer :type current_epoch: int :type current_loss: float Store the current state of the optimization in ``checkpoint_file``. """ torch.save({ 'epoch': current_epoch, 'loss': current_loss, 'parameters': state.get_checkpoint(), 'optimizer_state_dict': optimizer.state_dict()}, checkpoint_file) if verbosity>0: print(checkpoint_file)
[docs]def optimize_state(state, ctm_env_init, loss_fn, obs_fn=None, post_proc=None, main_args=cfg.main_args, opt_args=cfg.opt_args, ctm_args=cfg.ctm_args, global_args=cfg.global_args): r""" :param state: initial wavefunction :param ctm_env_init: initial environment of ``state`` :param loss_fn: loss function :param obs_fn: optional function to evaluate observables :param post_proc: optional function for post-processing the state and environment :param main_args: main configuration :param opt_args: optimization configuration :param ctm_args: CTM algorithm configuration :param global_args: global configuration :type state: IPEPS :type ctm_env_init: ENV :type loss_fn: function(IPEPS,ENV,dict)->torch.tensor :type obs_fn: function(IPEPS,ENV,dict)->None :type post_proc: function(IPEPS,ENV,dict)->None :type main_args: MAINARGS :type opt_args: OPTARGS :type ctm_args: CTMARGS :type global_args: GLOBALARGS Optimizes initial wavefunction ``state`` with respect to ``loss_fn`` using `LBFGS optimizer <https://pytorch.org/docs/stable/optim.html#torch.optim.LBFGS>`_. The main parameters influencing the optimization process are given in :class:`config.OPTARGS`. Calls to functions ``loss_fn``, ``obs_fn``, and ``post_proc`` pass the current configuration as dictionary ``{"ctm_args":ctm_args, "opt_args":opt_args}``. """ verbosity = opt_args.verbosity_opt_epoch checkpoint_file = main_args.out_prefix+"_checkpoint.p" outputstatefile= main_args.out_prefix+"_state.json" t_data = dict({"loss": [], "min_loss": float('inf')}) current_env=[ctm_env_init] context= dict({"ctm_args":ctm_args, "opt_args":opt_args, "loss_history": t_data}) epoch= 0 parameters= state.get_parameters() for A in parameters: A.requires_grad_(True) optimizer = torch.optim.LBFGS(parameters, max_iter=opt_args.max_iter_per_epoch, lr=opt_args.lr, \ tolerance_grad=opt_args.tolerance_grad, tolerance_change=opt_args.tolerance_change, \ history_size=opt_args.history_size) # load and/or modify optimizer state from checkpoint if main_args.opt_resume is not None: print(f"INFO: resuming from check point. resume = {main_args.opt_resume}") checkpoint = torch.load(main_args.opt_resume) epoch0 = checkpoint["epoch"] loss0 = checkpoint["loss"] cp_state_dict= checkpoint["optimizer_state_dict"] cp_opt_params= cp_state_dict["param_groups"][0] cp_opt_history= cp_state_dict["state"][cp_opt_params["params"][0]] if main_args.opt_resume_override_params: cp_opt_params["lr"] = opt_args.lr cp_opt_params["max_iter"] = opt_args.max_iter_per_epoch cp_opt_params["tolerance_grad"] = opt_args.tolerance_grad cp_opt_params["tolerance_change"] = opt_args.tolerance_change # resize stored old_dirs, old_stps, ro, al to new history size cp_history_size= cp_opt_params["history_size"] cp_opt_params["history_size"] = opt_args.history_size if opt_args.history_size < cp_history_size: if len(cp_opt_history["old_dirs"]) > opt_args.history_size: cp_opt_history["old_dirs"]= cp_opt_history["old_dirs"][-opt_args.history_size:] cp_opt_history["old_stps"]= cp_opt_history["old_stps"][-opt_args.history_size:] cp_ro_filtered= list(filter(None,cp_opt_history["ro"])) cp_al_filtered= list(filter(None,cp_opt_history["al"])) if len(cp_ro_filtered) > opt_args.history_size: cp_opt_history["ro"]= cp_ro_filtered[-opt_args.history_size:] cp_opt_history["al"]= cp_al_filtered[-opt_args.history_size:] else: cp_opt_history["ro"]= cp_ro_filtered + [None for i in range(opt_args.history_size-len(cp_ro_filtered))] cp_opt_history["al"]= cp_al_filtered + [None for i in range(opt_args.history_size-len(cp_ro_filtered))] cp_state_dict["param_groups"][0]= cp_opt_params cp_state_dict["state"][cp_opt_params["params"][0]]= cp_opt_history optimizer.load_state_dict(cp_state_dict) print(f"checkpoint.loss = {loss0}") #@profile def closure(): # 0) evaluate loss optimizer.zero_grad() loss, ctm_env, history, t_ctm, t_check = loss_fn(state, current_env[0], context) # 1) store current state if the loss improves t_data["loss"].append(loss.item()) if t_data["min_loss"] > t_data["loss"][-1]: t_data["min_loss"]= t_data["loss"][-1] state.write_to_file(outputstatefile, normalize=True) # 2) log CTM metrics for debugging if opt_args.opt_logging: log_entry=dict({"id": epoch, "loss": t_data["loss"][-1], "t_ctm": t_ctm, \ "t_check": t_check}) log.info(json.dumps(log_entry)) # 3) compute desired observables if obs_fn is not None: obs_fn(state, ctm_env, context) # 4) evaluate gradient t_grad0= time.perf_counter() loss.backward() t_grad1= time.perf_counter() # 5) log grad metrics for debugging if opt_args.opt_logging: log_entry=dict({"id": epoch, "t_grad": t_grad1-t_grad0}) log_entry["grad_mag"]= [p.grad.norm().item() for p in parameters] if opt_args.opt_log_grad: log_entry["grad"]= [p.grad.tolist() for p in parameters] log.info(json.dumps(log_entry)) # 6) detach current environment from autograd graph current_env[0] = ctm_env.detach().clone() return loss for epoch in range(main_args.opt_max_iter): # checkpoint the optimizer # checkpointing before step, guarantees the correspondence between the wavefunction # and the last computed value of loss t_data["loss"][-1] if epoch>0: store_checkpoint(checkpoint_file, state, optimizer, epoch, t_data["loss"][-1]) # After execution closure ``current_env`` **IS NOT** corresponding to ``state``, since # the ``state`` on-site tensors have been modified by gradient. optimizer.step(closure) if post_proc is not None: post_proc(state, current_env[0], context) # terminate condition if len(t_data["loss"])>1 and \ abs(t_data["loss"][-1]-t_data["loss"][-2])<opt_args.tolerance_change: break # optimization is over, store the last checkpoint store_checkpoint(checkpoint_file, state, optimizer, \ main_args.opt_max_iter, t_data["loss"][-1])